# /// script
# requires-python = ">=3.10"
# dependencies = [
# "numpy",
# "torch==2.8.0",
# "kernels",
# "kernels-benchmark-tools",
# ]
#
# [tool.uv.sources]
# kernels-benchmark-tools = { path = "../../../../../tools", editable = true }
# ///
import torch
import sys
from kernels_benchmark_tools import KernelTypeEnum, run_benchmark
from kernels import get_kernel
# Load the sage attention kernel
hf_kernels_sage_attn = get_kernel("kernels-community/sage_attention")
def sage_attention(query, key, value):
"""SageAttention with INT8 Q/K quantization and FP16 P/V"""
return hf_kernels_sage_attn.fwd(query, key, value, is_causal=False)[0]
run_benchmark(
kernel_type=KernelTypeEnum.ATTENTION,
impl_name="sage_int8_fp16",
impl_tags={"family": "sageattention", "backend": "int8_fp16_cuda", "compile": "none"},
impl_func=sage_attention,
)
Running attention benchmark on cuda with 6 workloads. impl wl p50(ms) ok sage_int8_fp16 cuda_attn_L128_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd' sage_int8_fp16 cuda_attn_L256_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd' sage_int8_fp16 cuda_attn_L320_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd' sage_int8_fp16 cuda_attn_L384_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd' sage_int8_fp16 cuda_attn_L448_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd' sage_int8_fp16 cuda_attn_L512_bfloat16 FAIL False Error: module 'sage_attention_cb34d81dafacbad9' has no attribute 'fwd'
Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]
Fetching 11 files: 18%|█▊ | 2/11 [00:00<00:00, 17.35it/s]
Fetching 11 files: 73%|███████▎ | 8/11 [00:00<00:00, 15.18it/s]
Fetching 11 files: 100%|██████████| 11/11 [00:00<00:00, 21.06it/s]